Model: Black Hole Standard Faraday Bag

Average Signal Attenuation

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Shielding Effectiveness (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>900 MHz</td>
<td>44 dB</td>
</tr>
<tr>
<td>1.8 GHz</td>
<td>46 dB</td>
</tr>
<tr>
<td>2.1 GHz</td>
<td>44 dB</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>50 dB</td>
</tr>
</tbody>
</table>

Test Method

The input and output ports of a Network Analyzer were each connected to a 50-ohm, quad-band monopole antenna with low-loss, high frequency SMA jumpers. The antennas were separated by 1-meter and a baseline transmission measurement from 800 MHz-2.5 GHz was recorded inside of an electromagnetically shielded environment. The “receive” antenna was then enveloped by the eDEC faraday bag and then another measurement was recorded. The two measurements were then subtracted from another to determine the Shielding Effectiveness. The multiple measurements were made in various configurations to ensure consistent and repeatable results. This test is meant to replicate the conditions called out in the IEEE 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures.

Test Graph
Shielding Effectiveness Test Report

Model: Black Hole Standard Faraday Bag - Non Window

Average Signal Attenuation

* 900 MHz ~ 58 dB
* 1.8 GHz ~ 60 dB
* 2.1 GHz ~ 60 dB
* 2.4 GHz ~ 54 dB

Test Method

The input and output ports of a Network Analyzer were each connected to a 50-ohm, quad-band monopole antenna with low-loss, high frequency SMA jumpers. The antennas were separated by 1-meter and a baseline transmission measurement from 800 MHz-2.5 GHz was recorded inside of an electromagnetically shielded environment. The “receive” antenna was then enveloped by the eDEC faraday bag and then another measurement was recorded. The two measurements were then subtracted from another to determine the Shielding Effectiveness. The multiple measurements were made in various configurations to ensure consistent and repeatable results. This test is meant to replicate the conditions called out in the IEEE 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures.

Test Graph
Model: Black Hole Large Faraday Bag

Average Signal Attenuation

- 900 MHz ~ 41 dB
- 1.8 GHz ~ 42 dB
- 2.1 GHz ~ 48 dB
- 2.4 GHz ~ 41 dB

Test Method

The input and output ports of a Network Analyzer were each connected to a 50-ohm, quad-band monopole antenna with low-loss, high frequency SMA jumpers. The antennas were separated by 1-meter and a baseline transmission measurement from 800 MHz-2.5 GHz was recorded inside of an electromagnetically shielded environment. The “receive” antenna was then enveloped by the eDEC faraday bag and then another measurement was recorded. The two measurements were then subtracted from another to determine the Shielding Effectiveness. The multiple measurements were made in various configurations to ensure consistent and repeatable results. This test is meant to replicate the conditions called out in the IEEE 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures.

Test Graph
Model: Black Hole Large Faraday Bag in Camo

Average Signal Attenuation

* 900 MHz ~ 41 dB
* 1.8 GHz ~ 42 dB
* 2.1 GHz ~ 48 dB
* 2.4 GHz ~ 41 dB

Test Method

The input and output ports of a Network Analyzer were each connected to a 50-ohm, quad-band monopole antenna with low-loss, high frequency SMA jumpers. The antennas were separated by 1-meter and a baseline transmission measurement from 800 MHz-2.5 GHz was recorded inside of an electromagnetically shielded environment. The “receive” antenna was then enveloped by the eDEC faraday bag and then another measurement was recorded. The two measurements were then subtracted from another to determine the Shielding Effectiveness. The multiple measurements were made in various configurations to ensure consistent and repeatable results. This test is meant to replicate the conditions called out in the IEEE 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures.

Test Graph
Model: Black Hole Large Faraday Bag - Non Window

Average Signal Attenuation

* 900 MHz ~ 62 dB
* 1.8 GHz ~ 53 dB
* 2.1 GHz ~ 60 dB
* 2.4 GHz ~ 51 dB

Test Method

The input and output ports of a Network Analyzer were each connected to a 50-ohm, quad-band monopole antenna with low-loss, high frequency SMA jumpers. The antennas were separated by 1-meter and a baseline transmission measurement from 800 MHz-2.5 GHz was recorded inside of an electromagnetically shielded environment. The “receive” antenna was then enveloped by the eDEC faraday bag and then another measurement was recorded. The two measurements were then subtracted from another to determine the Shielding Effectiveness. The multiple measurements were made in various configurations to ensure consistent and repeatable results. This test is meant to replicate the conditions called out in the IEEE 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures.

Test Graph
Model: Black Hole XLarge Faraday Bag

Average Signal Attenuation

- 900 MHz ~ 53 dB
- 1.8 GHz ~ 43 dB
- 2.1 GHz ~ 47 dB
- 2.4 GHz ~ 43 dB

Test Method

The input and output ports of a Network Analyzer were each connected to a 50-ohm, quad-band monopole antenna with low-loss, high frequency SMA jumpers. The antennas were separated by 1-meter and a baseline transmission measurement from 800 MHz-2.5 GHz was recorded inside of an electromagnetically shielded environment. The “receive” antenna was then enveloped by the eDEC faraday bag and then another measurement was recorded. The two measurements were then subtracted from another to determine the Shielding Effectiveness. The multiple measurements were made in various configurations to ensure consistent and repeatable results. This test is meant to replicate the conditions called out in the IEEE 299 Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures.

Test Graph

![Graph showing shielding effectiveness](image-url)